BAILEY, M. & BROWN, C. J. (1967). Acta Cryst. 22, 387-391.

- CANO, F. H., MARTÍNEZ-CARRERA, S. & GARCÍA-BLANCO, S. (1970). Acta Cryst. B26, 972–979.
- FLORENCIO, F. & SMITH, P. (1970). Acta Cryst. B26, 659-666.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A 27, 368-376.
- HANSON, H. P., HERMAN, F., LEA, L. P. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040–1044.
- KITAIGORODSKII, A. I. (1961). Organic Chemical Crystallography. New York: Consultants Bureau.

- MARTÍNEZ-PEREZ, C. & MARTÍNEZ-CARRERA, S. (1967). An. Real. Soc. Fis. Quim. 43(A), 313-328.
- SAKORE, T. D. & PANT, L. M. (1966). Acta Cryst. 21, 715-719.
- SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600–604.
- SMITH, P., FLORENCIO, F. & GARCÍA-BLANCO, S. (1971). Acta Cryst. B27, 2255–2260.
- STEWART, J. M., KUNDELL, F. A. & BALDWIN, J. C. (1970). The X-RAY System of Crystallographic Programs. Univ. of Maryland.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1973). B29, 2664

Structure Determination of Non-Linear Metallocenes. IV. The Crystal and Molecular Structure of Benzene-1,2-dithiclene-di- $(\pi$ -cyclopentadienyl)tungsten(VI)

BY T. DEBAERDEMAEKER AND A. KUTOGLU

Fachbereich Geowissenschaften, Philipps-Universität Marburg, D 355 Marburg, Germany (BRD)

(Received 30 April 1973; accepted 21 June 1973)

The chelate complex $(C_5H_5)_2WS_2C_6H_4$ crystallizes in the orthorhombic crystal system. The cell dimensions are a = 16.088, b = 11.148 and c = 7.735 Å; the space group is *Pnma* and Z = 4. The coordination polyhedron around the tungsten atom, defined by the cyclopentadienyl ring centroids and the sulphur atoms, is a distorted tetrahedron of nearly C_{2v} symmetry. The $S_2C_6H_4$ plane is inclined to the WS₂ plane at an angle of 8°. One of the two cyclopentadienyl rings occupies statistically the two possible positions with respect to the space-group symmetry (mirror plane).

Introduction

Of the series of 'dithiolene chelates', those with en-1,2dithiolene ligands and also two π -cyclopentadienyl ligands bound to the central metallic atom are an important group. Although there are many metallocene dithiolene chelates, only a few of the crystal structures are known (McCleverty, 1968). From these analyses it appears that the geometry around the central metallic atom is disturbed from C_{2v} symmetry, as proposed by McCleverty (1968), to C_s or C_1 symmetry. Köpf (1961) postulates a different endithiolene-dithio- α -dicetene mesomery depending on whether the complexes are formed with metals of the fourth or the sixth subgroup; as was pointed out by Ballhausen & Dahl (1961), they have different φ_0 orbitals.

The work described in this paper is part of a contribution to a better knowledge of these complexes.

Experimental

Yellow-orange crystals were kindly supplied by Köpf (Berlin), for a crystal structure analysis. The cell parameters were obtained from the least-squares refinement of 25 strong reflexions found by the 'peakhunting program' provided with the Philips PW 1100 automatic four-circle diffractometer. The crystallographic data are given in Table 1.

Table 1. Crystal data

Orthorhombic crystal symmetry Systematic absences 0kl: k + l = 2n + 1, hk0: h = 2n + 1Space group: *Pnma* or *Pn2*₁*a* $a = 16.088 \pm 0.008$ Å V = 1387.26 Å³ $b = 11.148 \pm 0.007$ Z = 4 $c = 7.735 \pm 0.005$ $d_{meas} = 2.16g$ cm⁻³ (in KI/H₂O Solution) M.W. 454.27 $d_{ca1} = 2.18g$ cm⁻³ F(000) = 864 $\lambda = 0.7107$ Å (Mo K α) Graphite monochromator

2082 independent reflexions were measured with a $2\theta - \omega$ scan. Each reflexion was measured in a 60 s scan with a scan rate of 0.02° s⁻¹; the stationary background was measured at both ends of the scan for 10 s. Two reference reflexions were checked every hour for intensity stability and for crystal orientation, but no appreciable variation was observed. Lorentz and polarization corrections were computed for each reflexion, but no absorption correction was applied. A reflexion was considered as unobserved and set to zero when $I_{hkl} \le 2^* \sigma(I_{hkl}), \ [\sigma(I_{hkl}) = \sqrt{(B_1 + B_2 + I_{peak})]}$. All the computation was carried out on the IBM 370/145 (150 kbytes) of our department and the TR 4 computer of the Zentralen Rechenanlage der Universität Marburg. The programs used were from the X-RAY 70 system or our own programs. The atomic form factors used in this work were those from Hanson, Herman, Lea & Skillman (1964) for the neutral atoms of tungsten and sulphur, and from Allmann (1967) for carbon. Corrections for anomalous dispersion were carried out for the tungsten atom, $\Delta f' = -1.17$ and $\Delta f'' = 6.99$ (Cromer, 1965).

Determination and refinement of the structure

All reflexions were used in the computation of the three-dimensional Patterson synthesis, from which the positions of the metal, the sulphur and the three adjacent carbon atoms were obtained. The rest of the structure was found from a difference Fourier synthesis computed with the above-mentioned atomic positions.

The refinement of the parameters of the molecule was carried out by full-matrix least-squares methods. Up to this stage the refinement was carried out for both of the space groups (cf. Table 1). However, the acentric space group $Pn2_1a$ had to be rejected because further refinement was impossible (R=0.073). There were large discrepancies between the C-C distances in the benzene ring (1.29-1.54 Å), and it was impossible to locate the atomic positions for reasonable cyclopentadienyl rings. In addition to the above results the intensity statistics had values very close to the theoretical values for a centrosymmetric structure. From this we deduced that the space group was Pnma. In the initial stages of the refinement all the atoms were given isotropic temperature factors; later they were given anisotropic temperature factors. The value minimized is of the form $\sum (w|F_o| - k|F_c|)^2$, where k is the scale

Table 2. Atomic and thermal parameters

	x	у	Z
W	0.47570 (3)	$\frac{1}{4}$	0.29567 (5)
S	0.38737 (14)	0.1072 (2)	0.1480 (3)
C(1)	0.3218 (5)	0.1864 (7)	0.0075 (10)
C(2)	0.2712 (4)	0.1243 (9)	-0.1064(12)
C(3)	0.2194 (6)	0.1872 (13)	-0.2219(12)
C(4)	0.3696 (13)	4	0.4975 (24)
C(5)	0.4195 (10)	0.1456 (13)	0.5292 (16)
C(6)	0.4935 (12)	0.1855 (16)	0.5787 (19)
C(7)	-0.4452	1 4	0.0288
C(8)	-0.4145	0.1456	0.1811
C(9)	-0.3828	0.2088	0.2941

factor and w is the weight $(w=1/\sigma^2, \text{ initially } w=1\cdot0;$ during the last cycles of refinement $\sigma = 4\cdot75$ for $|F_o| = 0$, $\sigma = 19/|F_o|$ for $|F_o| < 19$ and $\sigma = 0\cdot0575F_o$ for $F_o \ge 19$). After the last cycle of refinement the shifts were less than 20% of the standard deviation, the R value was then 0.060 (R_w 0.085). $R = \sum (|F_o| - |F_c|) / \sum |F_o|$, $R_w = \sum w(|F_o| - |F_c|)^2 / \sum w(|F_o|)^2$. The results of the structure determination and refinement are summarized in Tables 2-6 and Figs. 1-3.

T	abl	e 3	Inte	ratom	iic d	ista	nces	and	angle	es.
in	the	crys	tal.	struct	ure	of (C ₅ H ₂	5) ₂ W	$S_2 \tilde{C}_6$	H₄

WS	2·421 (2) Å
SC(1)	1.753 (8)
C(1) - C(1')	1.42 (2)
C(1) - C(2)	1·39 (1)
C(2) - C(3)	1.41(2)
C(3) - C(3')	1.40 (3)
WC(4)	2.31(1)
W - C(5)	2·33 (1)
WC(6)	2.32(2)
W - C(7)	2.23
WC(8)	2.29
WC(9)	2.32
C(4) - C(5)	1.44 (2)
C(5) - C(6)	1.33 (2)
C(6)-C(6')	1.44 (4)
SS	82·3 (3)°
$W_{}S_{}C(1)$	108.3 (5)
S C(1) - C(1')	120(1)
C(2)-C(1)-C(1')	120 (1)
C(1)-C(2)-C(3)	120 (1)
C(2)-C(3)-C(3')	120 (1)
C(5)-C(4)-C(5')	108 (2)
C(4) C(5) C(6)	106 (2)
C(5)-C(6)-C(6')	110 (2)

Discussion

Fig. 1 shows a projection of the molecule viewed in the [010] direction, with the atomic numbering and the angles between the different molecular planes in the molecule. A stereographic drawing of the molecule in the [001] direction is given in Fig. 3.

The final atomic parameters are given in Table 2. The interatomic distances and angles computed with these parameters are shown in Table 3. Table 4 gives the normal equations of the planes. In Table 5 the weight analysis of the observed and calculated structure fac-

Table 2 (cont.)

	B_{11}	<i>B</i> ₂₂	B ₃₃	B_{12}	B_{13}	B_{23}
W	3.87 (3)	3.83 (3)	3.48 (3)		0.37 (3)	
S	4.6 (1)	3.7 (1)	5.1 (2)	-0.1(1)	-0.3(1)	0.0 (1)
C(1)	3.9 (5)	4·0 (6)	4.3 (5)	-0.0(5)	0.7 (5)	-0.6(5)
C(2)	3.7 (5)	5.2 (7)	5.1 (6)	-0.3(5)	0.0 (6)	-0.3(6)
C(3)	4.4 (7)	6·8 (10)	5.4 (7)	-0.2(7)	-0.2(6)	-0.3(7)
C(4)	7 (1)	13 (3)	5 (1)		3 (1)	
C(5)	11 (2)	8 (1)	5 (1)	-1(1)	1 (1)	1 (1)
C(6)	11 (2)	11 (2)	6 (1)	3 (1)	3 (1)	1 (1)
C(7)	2	30	3		2	
C(8)	3	3	8	0	3	0
C(9)	3	12	4	0	2	0

tors in the last cycle of refinement is given. The comparison between observed and calculated structure factors after refinement is given in Table 6.

Table 4. Normal equations of selected planes and related angles in the crystal structure of $(C_5H_5)_2WS_2C_6H_4$

No.	plane
1:	S-W-S
2:	S-benzene-S
3:	cp ring (normal)
4:	cp ring (statistical)
5:	W-cp(1)-S/S
6:	W-cp(2)-S/S
equatio	ons
10.080	X - 0.000 Y - 6.023 Z - 3.013 = 0
11.729	X + 0.174 Y - 6.293 Z - 3.773 = 0
- 4.894	X - 0.078Y + 7.368Z - 1.835 = 0
14.037	X - 0.285 Y - 3.774 Z - 7.494 = 0
A 000	X 11 140 X 0 000 7 3 707

Plane

1:

2:

3:

4:

5: 0.000X + 11.148Y - 0.000Z - 2.787 = 06: 0.000X + 11.148Y + 0.000Z - 2.787 = 0

T 11 140	51 + 00
Planes	Angle
1-2	8·1°
1-3	21.1
1-4	22·0
1-5	90·0
1-6	90 ∙0
2-3	29.1
2–4	14.2
3-4	43.1

Table 5. Weight analysis of the observed and calculated structure factors

		Nu	mber of			
		reflexi	ions in this			
$\langle F_o \rangle$	$\langle F_c \rangle$	ir	nterval	$\langle \Delta F \rangle$	$\langle w \Delta F^2 \rangle$	R
0.0	2.0		172	0.07	0.01	0.000
6.6	5.1		224	1.87	0.66	0.200
10.0	8∙4		173	2.00	1.64	0.127
13.0	12.1		175	1.64	2.28	0.086
16.0	15.7		166	1.39	2.36	0.069
18.9	18.8		153	1.31	2.72	0.063
22.4	22.7		177	1.42	1.82	0.057
27.4	27.6		162	1.56	1.66	0.023
34•2	34.4		152	1.80	1.29	0.049
45.1	44.8		151	2.19	1.36	0.041
62·1	61.5		154	2.58	1.31	0.042
90.9	89.4		153	3.84	1.05	0.040
158-9 154-9			72	6.41	0.82	0.043
			Number of	f		
			reflexions in	1		
$\langle \sin \theta / \lambda \rangle$	$\langle F_o \rangle$	$\langle F_c \rangle$	this interva	$ \langle \Delta F \rangle$	$\langle w \Delta F^2 \rangle$	R
0.22	98·1	95.4	153	6.40	4.11	0.065
0.33	65.9	64·3	154	2.65	1.31	0.039
0.40	47.4	46.5	154	2.12	1.59	0.045
0.45	39.1	38.2	158	1.94	1.63	0.020
0.49	33.1	32.4	161	1.75	1.37	0.053
0.52	28·2	27.5	162	1.66	1.63	0.059
0.55	22.9	23.0	171	1.28	0.95	0.056
0.58	18.7	18.9	168	1.27	0.96	0.068
0.61	16.5	16.6	156	1.24	0.93	0.075
0.63	15.1	15.2	172	1.39	1.29	0.096
0.66	13.0	13.2	166	1.16	0.88	0.090
0.68	11.4	11.4	181	1.40	1.34	0.123
0.70	9.9	10-1	126	1.37	1.24	0.130

According to the parameters listed in Table 5, it seems unlikely that there are systematic errors in the data, so that in the discussion which follows such errors can be neglected.

The molecule itself possesses the mirror symmetry of the space group (Fig. 2). This feature was also observed by Kutoglu & Köpf (1970) in the structure $(C_5H_5)_2MoS_2C_6H_4$. The special position of the molecule defines the absolute $C_s = m$ symmetry. The possible $C_{2v} = mm^2$ symmetry is not satisfied because of the folding of the molecule along the S-S axis, as is shown in Fig. 1.

Fig. 1. Profile of the molecule $(C_5H_5)_2WS_2C_6H_4$ viewed in the [010] direction.

Fig. 2. Idealized representation of the chelate part and the normal cyclopentadienyl ring of $(C_5H_5)_2WS_2C_6H_4$ with regard to the mirror plane of the space group.

Fig. 3. Stereographic drawing of the molecular packing in the crystal.

Table 6. Observed and calculated structure factors of $(C_5H_5)WS_2C_6H_4$

	- <i>i</i> - <i>i</i> ,	- 0.0	- e e		- 10 1.	- 10 F:	- 0 6	- 1, 1	- 1. 6.	• •, •		e ro ro	H FO FO	- 10 10	- 1, 10
		12 122 •164 13 225 •72	1 ³ 82 •51 •37 .31	13 4-3 124	:3 210 -253 :3 103 2-3	: :: :::	1447-1417	14 213 -23		1 11 11	6 422 37V	110 117	n 375 418 1 242 241 2 174 174	\$ \$7 .53 \$ 403 .475	3 474 4458 4 369 4830 9 507 4474
			1 107 147	10 400 474 17 216 201 10 313 121		·•••••••••••••••••••••••••••••••••••••	5 752 743 9 977 - 617 7 727 - 611	14 -4 -11/ 17 2-2 22	12 10 10	1 (0) 0) () 0) 0 ()	270 - 243 1 - 21 - 11 - 21 - 21 - 21 - 21 - 21 -	5 64: -458 5 245 -/17 7 441 -624	3 624 581 4 247 -241 5 73* 657	7 500 -533 8 1 1 -1 88 9 537 -549	6 269 -254 7 613 -787 8 189 -193
14 442 447 14 442 -44 19 25 -25	1 11 - 111 1 11 - 111 1 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		* 22 - 211 5 156 125 6 134 - 217	1° C 15 2- 255 272 21 49 -05		1 47 37 2 345 4447 3 175 125	• •37 •412 • •67 •30	* *** L+3 * *** ***	14 161 247	* 46* -45* 3 343## * 41100	14 - 17 24 - 127	214 -193	6 108 03 7 788 710 8 181 157	10 100 -04	10 11 10 10
22 244 - 15	14 244 -245 24 234 -125 24 234 -125	2 14 -12 14 -12	, 10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	1 412 4012			1 234 217	1.7.137		22 23 - 21		13 198 189	10 175 152	15 195 -17	13 363 -379
174 117		2 215 142		1113-1144	6 745 755 7 447 475 8 245 255	19.19	13 953 745 7 95 ⁴ 745 7 145	1 235 221 3 231 - 301			1 .06 175	1, 277 731 1, 48 -53 1, 1*3 76*	90 +98 5 220 247 16 - 30	1 177 1127	· · · · · · · · · · · · · · · · · · ·
27 13 45	**	6 : A 77 : # 31 7 3 * 7 33 *	14 17 175 15 85 54 16 255 247	417 442	10 61 -3-7	11 147 147 12 71 50 13 113 427	10 130 133 27 141 140		221 - 531	244 242	· · · · · · · · · · · · · · · · · · ·	112	17 11 10 107	4 116 -143 5 160 175	2 91 443 3 604 673
212 LEC 2 24-4-2471 4 2159-2174	2	0 404 457 10 1015 1014	****	1 12	· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		13 254 -25	, 194 9-6 , 197 9-6 , 197 9-6	141 134 22	6 ·7· ·57 7 ·39 s*1	2 73 81 1 369 -127 4 327 328	2 273 277 3 975 -957 4 77 47	275 784 8 0 -23 9 142 141	212 -214 7 294 -214
125 - 14, 12 - 11 - 24		12 /	2 75 -17 2 2 - 10 2 10 - 10	14 545 - 517 14 545 - 517	14 737 - 274 14 14 14 14 14	247 - 147 241 - 244	· · · · · · · · · · · · · · · · · · ·			1 175 - 137 4 156 - 145 7 344 - 517	10 264 214	1 129 103	5 627 -583 7 614 -579	10 147	9 115 AP 10 229 -194
		44 497		1, 2, 3, 2, 5	, , , , , , , , , , , , , , , , , , , ,	211 - 22	* 475 .447	3 4 2 4 2 4		· · · · · · · · · · · · · · · · · · ·	3 .04 .99 5 .90 .45	9 550 -17j 11 44 - 32	9 714 •710 17 16* 11Y 11 57 •7	17 17 19	2 203 -143
2			1 2 23			11 258 274	1	5 214 21 5 271 26 7 3 4 25			10 120 P3	17 151 -179	13 3cA 3A2	1 119 102	10 133 11-2
		1 244 274		- 1999 1999		2 24 25	13 10 370 14 204 ./15 15 104 314	10 10 17		· · · · · · · · · · · · · · · · · · ·		17 123 -11	274 218	3 3 3 3 3	e 503 342 1 3 10 2 594 375
12 1 44 -91-			10 - 91 - 194 17 - 17 - 17	3 7:2 -5:7 4 :451 1434 5 A41 -787	9 194 477 	9 139 4134 122 114 2 2-2 -191	17 194 147 14 65 -40 14 195 194	12 257 23- 13 157 -174 14 147 134	2 10 - 12 - 7 1 10 - 12 - 7 1 10 - 12 - 7	17 142 -144 -16 144 1 144	2 :75-1100 4 :06 -54	1.1.1.1	10140	7 3*3 407 * 145 -20 * 3*7 415	3 737 199 4 333 290 5 953 554
10 151 -141 20 40 64	1747 1770 1747 1770	314 334	- 484 342 - 73 -156 2 167 574	7 612 -747 612 -747 6 573 512	12 A2A 6-7		2 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	10 14 0			0 .36 .40 2 .35 .27	5 948 514 6 162 -65 7 341 354	3 3-4 -343	11 342 377 12 0 112 13 271 284	7 495 706 8 127 90 9 487 478
2241 2123 2241 2123	1 114 442 4 114 1443	11 311 327	4 -34 64V 5 196 -03	1 1 1 1	10 140 140	· · · · · · · · · · · · · · · · · · ·	5 944 946 5 524 -519 4 727 /-7	· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·	6 00 000 10 00 0101 1 00 101	1.4	6 18176 7 881 -PTO 8	,	10 9 13 11 116 301 12 9 1
6 1699 164- 6 277 22* 1- 215 -22*		13 211 197 14 142 111 15 99 37	· · · · · · · · · · · · · · · · · · ·	11 112 -461 14 317 -121 15 255 -293	101000	1	· · · · · · · · · · · · · · · · · · ·	* 2:6 .3·				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 345 4374	3 437 -444	13 105 207
12 220 -275 14 223 -26° 10 431 -42°		17 02 44 17 254 31A	12 97 114	17 155 -144	2 057 -051	3 . 1-3	451 -8-4 17 -22 -/-8					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	5 297 -314	2 2-6 -2-6 2 2-6 -2-6 5 62	1 553 -27C
24 245 -26- +12 -42 2 +11 -33+	19 29975 19 199 199 19 199 -191	20 20 20 20 1	· · · · · · · · · · · · · · · · · · ·	2- 227 -367 2: 0 -19 22 143 -189	5 545 467 6 577 -546 7 765 557	4 1414-1474 7 453 -475 8 916 -462	13 471 4465	19 179 291 19 179 291	2 11 22	· · · · · · · · · · · · · · · · · · ·	19 114 715 - 41 745 - 51 943	, , , , , , , , , , , , , , , , , , ,	1.1.1	10 00 00 000	3 454 -476
4 11:0 997 6 114: 125 8 1146 134-		1 347 -261 2 454 -281 3 356 -374		4+3 (#2 + 1648 1926 - 375 - 114 - 726 - 144	421 412 1 231 222	17 444 -***	10 221 0213	1 107 -17-		· · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	····	7 939 -292 7 939 -292 7 939 -290
17 • 23 95: 14 50; 612 16 4:; 432	1 7.4 -445 1 7.4 744 1 7.4 744	9 919 4545 4 119 419 7 14 119	4 147 243 5 222 34 6 142 347	4 1313 1467 5 17 111 4 1547 1424	17 155 04 13 255 251 14 27- 253	1, 241 200	19 101 •48 21 152 •140	211-14	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	3-3 -5	5 744 742 6 771 -740		12 171 140
1 1 1	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	7 972 141 - :3/5 1201 3 4,4 463	15 237 237 14 147 105 17 11 11	10 21	110 110			19 145 144 19 145 144	2	12 374 442	111 1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	14 145 150
	* *** *** 1 ** *2=3 1 ** *2=3	· · · · · · · · · · · · · · · · · · ·	1 24 24	11 C 57 12 772 714 11 671 ••27		31 177 181	5 500 /a. 6 424 647 7 305 338	1 1 1	1 +14 ++12 12 +47 +216 11 54 + 216	2 163 4195 3 341 -384 4 174 4196	12 /51 -1+0 13 112 -32/ 14 10 -1+0		······································		c 311 -207 1 105 -60
12 314 121	13 3*7 3*1 13 17* 1*1 14 147 653	4	14 146 114 113 11 1 491 -477	15 24651	2 24' 2242 3 415 -418 4 34' -31'	2 1014 1000	1- 123 413	**:3 (*) 0 151 197 1 0 011	14 244 -244	5 25: -204 . 144 -74 7 142 -144	· · · · · · · · · · · · · · · · · · ·	3 17443	5 22233 6 4 - 65	·····	3 22 4 4 4 2 2 7
10 3/1 32		19 12 12	17 180	1 1-3 97	4 591 -614 7 237 -227 8 585 -647	4 1772 1225 5 948 -949 6 776 -15	12 411 443			· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1	34.43	•••	3 319 539	6 202 -142 7 471 -470 8 114 -92
· · · · · · · · · · · · · · · · · · ·	· · · · · ·	5 1795 1851 1 57 55 2 1553 1361	2 12 197 7 197 7 197	21 143 - 75	· · · · · · · · · · · · · · · · · · ·	7 :423-1554 8 496 391 9 A41 -***	15 183 180			13 194 -127	3 1-71 1-73		· · · · · · · · · · · · · · · · · · ·	5 215 281 6 6 -21 7 111 -21	11 132 .377
1 1230-123-	2) 207 240 - 32 . 11 1 461-1570 2 412 - 4-3	200 -201	12 31 41	2 1567-1587 3 1263 1-99 4 1597-1473	14 245 -256	11 583 -525 12 158 -124 13 335 -340	10 177 171 577 173		75 74		c :::- ::- 2 :::2 :::0 6 :: 25		5 5-7 5,1 4 165 164 7 775 810		13 234 -230
14 144 443	3 79140 4 101 7-1-19 5 301 -2-9	2 0-5 -5+1 2 313 55- 2 245 -245	12 17 10	5 354 375 5 871 - 123 7 517 462	10 130 -133 17 110 A3 18 83 -70	14 325 -297	1 100 +177 2 611 +349 3 149 114	3 2 3 2 1	7 474 440 7 774 310 6 774 773				636 676	2 26 3	
1112	6 27 7-16-3 7 7:2 4410 6 17 97-15-42	12 12 224	3 3 -1 3 7e -2 3	1 67 - 27	2 303 123 1 234 -2-0 2 303 610	17 17 19	5 775 715 6 104 -340 7 454 831						· · · · · ·	· · · · · · ·	5 245 240 6 177 -149
4 7+1 72+ 8 451 30+ 8 516 531	11 11 11 11 11 11 11 11 11 11 11 11 11	14 344 -131 15 149 -131 15 277 -245	5 :55 -155 7 71 -75 8 :67 -175	12 2-0 161 11 442 459 14 315 10-	3 184 -192		0 407 011 1 13 60	*****		11 11	· · · · · · · · · · · · · · · · · · ·	1	15 26- 26/ 16 - 35 17 142 144	223	7 214 214 5 152 -140 9 142 124
12 233 -21			**15 -*1	14 179 179	124 -127	3 1224 1107		417 41 - 417 41		2.5 27			· · · · · · · · · · · · · · · · · · ·	1	12 155 -143
2 21 22	12 144 142 14 147 -147 14 144 44	1 244 251	210 210	20 106 97 20 273 245 21 57 22	; ;;	* *** ***	15 155 170 16 215 227 -7 155 144	· · · · · · · · · · · · · · · · · · ·			3 150 443	2 22 42 2 20 10 2 20 10		3 617 613	
4 505 545 5 816 751 8 715 65-	2	2 324 276 4 714 736 5 37- 334	6 124 120 1 109 100 1	1240-1272	16' -15'	11 415 424	1 13 134	· · · · · · · · · · · · · · · · · · ·			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		\$ 155 -122	354 -334	1 125 147
12 145 41 4 114 36 10 2-6 2.4	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	2 25 413 2 179 - 1713 5 474 - 514	4 4+6 ++6* 4+5 +467 112-1-7	1 451 444 1 451 444 1 451 144	11 1-2 -117	2 174 +157 3 474 +847 4 335 +345		1 10 14 1 10 14 1 14 17		9 70° 773 20 21 774 647	1	12 10 41	10 256 27- 11 51 32 12 2-6 165	4 187 170 5 293 350 6 131 114
		1- /14 /41		4 4 4 4 4 7 5 4 4 7 2 4 5 7 5 3 7 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 213 212	10 201 -011	5 515 .52C 7 102 .332 8 525 .340		11 2 2			1 1 3	10 11 213 10 12 75	15 278 257	143 110 9 305 359
· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	14 1-4 3-9	· · · · · · · · · · · · · · · · · · ·		7 234 244 4 473 473	27	10 423 4194				1 1 57 7 7 51		223 224	17 129 145	11 141 355 12 33 522 13 19: 186
5 6 5	1	10 11 17/				1 541 575	13 84 10	2 12 2 12		· · · · · · ·	1 1 1 1 1 1 1	*** ***	3 45' -461	2 355 -116	· · · · ·

Table 6 (cont.)

н	r0			* *	16		5.0	**		10	· · ·	-					- FQ		10	, C		.,		
	×10 f		•	174	140		344	32.		•••			2-3	• 21 •	- 2	1.27	123	5	117	114	- 2	123		
1	442 -			111	• 3	?	314	342	1	102	357	- 1	1.0	100	•	202			171	100				
- 2	70		,	19-	221		514	221	- 2	194	-112		140	- 20		101	122	10			•			
3	374 .	• 3 / •		• 12	···.		373	3.45	,	110	300	- 2	177	•1/2		112				· · · ·				
•	103	•-	•	141	-1-/		1''	147		: • •	-1-0	•	120	-112		11	100	1	472		۰.	<u>.</u>	£21	
•	105 -	•1 • •		***		•	574	22.	•	195	~~~		190	*122	10							****	••••	
	131	12'	•	47.1	• 3 7 17	10	-	••	•	2 je	- 270				11	107	143	•	175			331	••••	
,	140 .	-141		241	- 241	11	540	255	,	534	14.		103	•,••	12				124	131	1	?		
	131	11.	,	23.	•> •1	12	. 2	- 14		- 211	- 212		- 22	•??				2				~		
•	**	-0-	- 3		- , - ,	13	2.17	142			2.				- 7	• * *		:	-12		- 2 -			
10	170	17,				3.4	• ?		19	212	- /1 9				· ·							·::		
11	•,	· ·	•	137	- 113	12	131	140	11		••••		515	112	2	192	-363		22.6	234		. 22	112	
- 12	\$25	10.	•	174	+240		· · · ·	110	12	1.44	-144		112			117		•		· • *		1.1.1		
	- 6 2 2 2		,	284	-) * 6	,	1	-300	13	161	-134	2	1.3	:0/		~	-2-0				- 1	197		
	150 -	-1.07		141	-110	2	1.4	124					-12/		. ?	141	•1/2		222	• 7 7 *	۰.	133		
1		• 3 r	٠	331	- 1 I V	,	**1	- 454		190	3.45				•	1	*1/7		171	- 01		• • • •		
2	1.44	-12-	10	-	•10	- 1	<i>~~?</i>	· / ·	1		• /	•	144			\$75	-1-0		~ ~ ~		1		146	
3	140 .	-14-	11	320	• 3• 1	•	317	-347	2	·''	272		**10	· · ·	- 2	121		3	112	-122		122		
•	108 .	-12-	12		.,	^	- 615	24 4	3		2.0	•	111	2 9 1	•	1.1			2.0	• • • • •				
•	255 -	-20;	13	2**	• 2 • 3	,	1.1	-15*	•	-25e	~""	1	c	••	10		•••	•				112	• • • •	
٠	**		14			•	324	213	•	215	23.4	2	150	104	11	122	-112	•	144	-174	2	2		
,	250 .	• 20 •	- 15	11"			• •	• '	•	254	101	,	122			.,,			174	•117			•••	
	17	••		**1	S. 1.*	1.5	·**	241		- 17.7	21 2		122	117							· ' .			
٠	2-3 -	-23+	•	· ' '		11		••		117	20	•	140	144	۱.	210	212		1.02	103			· · · ·	
10	3	•4.	,	••	- > >	12	224	241	. 9	264	5.0		5.00	1.49	- ?	130	-1-2	?				310		
,,	2.4	-214	•	317	1.4	:,	124	124	10	- 5	19		141	160	3	210	~~		177	107	1	?		
	×+10 ,	- دون		1.51	+ 2 10	14		142	11		120	- 2	. •	• 3 3		20-	-1-0		150	-1.69		122		
c			•	· · · ·	1.56		***		12	'?	-10		3.00	20.0		162	100	,						
1	244	24 ·	•	3.4	-31+		* * *			**?			- 11/			127	+144		· · · ·	·		122	1.1	
2		•1:	,	: • •	1+5	:	•,	30	1		• \$77	•	112					e .	310			- 11		
3	3-1	32;			- 0-		34.9			- 11		•	- 22			~	•				•			
•	• •	• • •		• ,	.,	,	,.,	-117	,		-717						115		107	112				
•	512	244	10	·••	• ? • «			• / • 7			102		1.1		10	- 22					1	42		
	111	•12.	:1	-	- * *	2	· · ·			: 62	-153				31				<u></u>	121		•		
- 7		12.	12	127	- > > •	- 2	- 52		•			- ÷.				- 222	·	- 2	111				115	
8	133	• • • • •	13	171	-: / •					- 17 (- 11	- 117	•//	c	127				- C.	- 2	·:::	12.	
•	-	•1.	1.4	10-	-2-4	•	114			- 417	410	- 12	1.24	.1	1				110	- 11				
	**11	· · /	13	141	-1,0	٠	·-•	· / • ·	٠		-13-							- 2	* 20					
e	•,			• • • •		10		• • •	10	100	:45	-	358	,72	3	154		٩		101		~		
1				40.		11	· - '	.14.	11		50	1			- 1	102	250		···.		1			
2	1:0	и.	•	110	- 3	- 22						2	30.	345		1/2	1.1	1		•••		203	• • • • •	
3	÷6		2	• , ,	4.0	13	104	-14-	e	254		3	1/1	10-	•		144							
•	117	120	3	1.4	÷.,	1.4	•,	••	- 1	102	• * * •	•	212	332	,	.,,	1+2	3	113	>				

The fourfold neighbourhood of the central atom, a distorted tetrahedral one, is defined by the angle $S-W-S=82\cdot3^\circ$. This value was predicted by Alcock

(1967) in a modified Ballhausen-orbital schema. The angle defined by the two normals to the C_5H_5 planes is equal to 137°, which is similar to the value found in $(C_5H_5)_2MoS_2C_6H_4$ (Kutoglu & Köpf, 1970) but lies between the corresponding values for $(C_5H_5)_2MoH_2$ (Gerloch & Mason, 1965) and $(C_5H_5)_2MoS_2C_6H_3CH_3$ (Knox & Prout, 1969). The plane formed by the atoms of tungsten and sulphur nearly bisects the angle formed by the intersection of the two C_5H_5 planes (21 and 22°).

The tungsten-sulphur distance is 2.421 Å, in good agreement with the sum of the covalent atomic radii (W: 1.41; S: 1.04 Å) as given by Slater (1964).

The bond distance between the sulphur and the carbon atom [C(1)] of the tungsten ring is 1.753 Å; if the sum of the covalent radii (C=0.77 Å for a single bond) of these atoms is taken, a distance of 1.8 Å is found, as in paraffinic substances like CH₃ SH. The observed shortening of the S-C distance, which is above the 3σ range (3σ =0.024 Å), could be due to the

fact that the partial double bonding of the benzene ligand is extended towards the sulphur atom, if other errors such as the systematic ones in the data are eliminated. The sulphur-sulphur distance (3.185 Å) in the chelate ring of the molecule results from this configuration.

The interatomic distances and angles in the benzene ring of the molecule are identical with the values normally found (average 1.39 Å and 120°). An interesting feature of this molecule is that one of the cyclopentadienyl rings is in a stable position, whereas the other one occupies statistically two possible orientations in the crystal. Therefore only the distances and angles of the first cyclopentadienyl ring are reported [C(4)-C(6)] in Table 3. The fivefold symmetry of this ring is disturbed in such a way that two C-C distances [C(4)-C(5)=1.437 and C(6)-C(6')=1.439 Å] are longer and one [C(5)-C(6)=1.326 Å] is shorter than the values expected for an aromatic ring like benzene (1.4 Å).

The variation in the C-C distances is of the order of 7σ . A considerable part of this discrepancy is probably a consequence of the atomic thermal vibrations, which influence the calculated bond distances. An underestimation of the standard deviations seems to be unlikely to have resulted from the calculation procedures. It is not clear why this differentiation rather than the expected equivalence of the C-C distances in the cyclopentadienyl ring is observed. However, the angles in this ring ligand (106, 108 and 110°) are close to the normal value of 108°.

The distances from the cyclopentadienyl ligands to the central atom are equal (2.004 Å). The carbon atoms of the undisturbed C_5H_5 ring are located 2.312, 2.331 and 2.322 Å from the tungsten atom; in the disordered ring these values are not regular but are still reasonable (2.322, 2.340 and 2.230 Å).

The molecular packing

The molecules lie on the mirror plane of the space group *Pnma* so that the centre of gravity of the molecule (\pm tungsten atom) occupies approximately the 4(c) position of the space group and the pseudo-parameters $\frac{1}{2}, \frac{1}{4}, \frac{1}{4}$. There is octahedral coordination of molecular packing around each of the molecules, where the ideal intermolecular distance is *ca.* $\frac{1}{2}$ of the identity period in the direction [100], and equal to 8.0 Å. The stereographic drawing of Fig. 3 shows the orientation of the molecule in the unit cell. All the intermolecular distances are greater than 4.0 Å.

We thank Dr H. Köpf, Berlin, for providing us with the crystals. We are indebted to Professor E. Hellner for his interest in this work.

References

- ALCOCK, N. W. (1967). J. Chem. Soc. (A), pp. 2001–2009. ALLMANN, R. (1967). Acta Cryst. B22, 432–433.
- BALLHAUSEN, C. J. & DAHL, J. P. (1961). Acta Chem. Scand. 15, 1333–1336.
- McCLEVERTY, J. A. (1968). *Progress in Inorganic Chemistry*, Vol. 10, p. 49. New York: Wiley-Interscience.
- CROMER, D. T. (1965). Acta Cryst. 18, 17-23.
- GERLOCH, M. & MASON, R. (1965). J. Chem. Soc. pp. 296-304.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040–1044.
- KNOX, J. R. & PROUT, C. K. (1969). Acta Cryst. B 25, 2013– 2022.
- Köpf, H. (1968). Z. Naturforsch. B23, 1531-1533.
- KUTOGLU, A. (1972). Z. anorg. allgem. Chem. 390, 195-209.
- KUTOGLU, A. & KÖPF, H. (1970). J. Organometal. Chem. 25, 455–460.
- SLATER, J. C. (1964). J. Chem. Phys. 41, 3199-3204.